欢迎来到专业的聚能秘书网平台! 工作总结 工作计划 心得体会 疫情防控 述职报告 思想汇报 教案设计 对照材料
当前位置:首页 > 专题范文 > 公文范文 > 正文

数学

时间:2022-10-21 15:42:03 浏览量:

摘要:本文以增强学生数学学习兴趣为目的,介绍了数学中存在的美。主要分以下几个方面:1、数学中的自然美:2、数学中的简洁美;3、数学中的和谐美;4、数学中的奇异美;5、数学中的统一美。文章用将数学和文学类比的手法重点详细阐述了数学的简洁美。

关键词:数学美;自然:简洁;和谐;统一

数学中的美,不是以艺术家所用的色彩、线条、旋律等形象语言表现出来,而是把自然规律抽象成一些概念、定理或公式,并通过演绎而构成一幅现实世界与理想空间的完美图像。只有数学内在结构的美,才更令人心驰神往与陶醉。它的博大精深与简明透彻都给观赏者以巨大的美的享受。罗素说过:“数学在使人赏心悦目和提供审美价值方面,至少可与其它任何一种文化门类媲美。”

著名数学家陈省身先生曾不止一次地提出:“数学是美的。”数学的美体现在方方面面:也许美在她是探求世间现象规律的出发点;也许美在她用几个字母符号就能表示若干信息的简单明了;也许美在她大胆假设和严格论证的伟大结合;也许美在她对一个问题论证时殊途同归的奇妙感受;也许美在数学家耗尽终生论证定理的锲而不舍;也许美在她在几乎所有学科中的广泛应用……而美的数学,在自古崇尚诗书传世的中国,竟也浸染着扑鼻的书香。中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样颜色,这就是数学的文采。

我们先来看看数学中的自然之美。刘勰《文心雕龙》以为文章之可贵,在尚自然。文章是反映生活的一面镜子,脱离生活的文学是空洞的,没有任何用处和美感。数学也是这样。数学存在的意义,在于理性地揭示自然界的一些现象规律,帮助人们认识自然,改造自然。可以这样说,数学是取诸生活而用诸生活的。数学最早的起源,大概来自古代人们的结绳记事,一个一个的绳扣,把数学的根和生活从一开始就牢牢地系在了一起。后来出现的记数法,是牲畜养殖或商品买卖的需要,古代的几何学产生,是为了丈量土地。中国古代的众多数学著作(如:《九章算术》)中,几乎全是对于某个具体问题的探究和推广。在中国,数学源于生活,在外国,历代数学家也都宗法自然。阿基米德的数学成果,都用于当时的军事、建筑、工程等众多科学领域,牛顿见物象而思数学之所出,即有微积分的创作。费尔玛和尤拉对变分法的开创性发明也是由探索自然界的现象而引起的。

“世事再纷繁,加减乘除算尽;宇宙虽广大,点线面体包完。”

这首诗,用字不多,却到位地概括出了数学的简洁明了,微言大义。数学和诗歌一样,有着独特的简洁美。诗歌的简洁,众所周知。寥寥几字,却为读者创造出了广阔的想象空间,这大概正是诗歌的魅力所在。诗与数学之间最深刻的关系莫过于数学概念或意境与诗歌的结合:

七八个星天外,两三点雨山前。(辛弃疾)

一去二三里,烟村四五家。亭台六七座,八九十枝花。(邵雍)

一帆一桨一渔舟,一个渔翁一钓钩。一俯一仰一顿笑,一江明月一江秋。(纪晓岚)

一别之后,二地相悬,只说是三四月,又谁知五六年,七弦琴无心抚弹。八行书无信可传,九连环从中折断,十里长亭我眼望穿,百思想,千系念,万般无奈叫丫环。万语千言把郎怨,百无聊赖,十依阑干,九九重阳看孤雁,八月中秋月圆人不圆,七月半烧香点烛祭祖问苍天,六月伏天人人摇扇我心寒,五月石榴如火偏遇阵阵冷雨浇花端,四月枇杷未黄我梳妆懒,三月桃花又被风吹散!郎呀郎,巴不得二一世你为女来我为男。(卓文君)

读上面这些诗,每个人都能明显感到,诗的意境全来自那几个数词,无论是数词的单个应用,重复引用,抑或是循环使用,看似毫无感染力的数词竟也都能表现出或寂寥,或欣然,或恬淡,或伤感的思想感情a在外国,中世纪欧洲两个最伟大的诗人——但丁(Dante)和乔叟(G,Chaucer)的作品也无不充满着数学知识。17世纪,英国著名形而上学诗人约翰·多恩(JohnDonnc)和安德鲁·马佛尔(AndrewMarvell)通过圆规、欧氏几何中的平行线之类的数学概念来类比爱情。后者的《爱的定义》尤为有趣:像直线一样,爱也是倾斜的/它们自己能够相交在每个角度/但我们的爱确实是平行的/尽管无限,却永不相遇。

爱因斯坦说过:“美,本质上终究是简单性。”他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。

数学基本概念、理论或公式所呈现的简单性就是一种实实在在的简洁美。而且这一种简洁美中,往往又包含了物质世界的伟力和完美性,使学生学得既轻松又有味。

圆的周长公式:C=2πR,就是“简洁美”的典范。世间的圆形有多少?没有人能说清楚。但它们的周长C、半径R,都必须服从刚才所给出的公式,一个如此简单的公式,概括了所有圆形的共同特性,能不令人惊叹不已?

在数学中。像周长公式这样形式简洁、内容深刻、作用很大的定理还有许多。比如:勾股定理:直角三角形两直角边的平方和等于斜边平方;正弦定理:设三角形的三边为a、b、c,他们的对角分别为A、B、C,外接圆半径为r,则有关系式a/sinA=b/sinB=c/sinC=2r:……

数学的这种简洁美,用几个定理是不足以说清的,数学历史中每一次进步都使已有的定理更简洁。正如伟大的希而伯特曾说过:“数学中每一步真正的进展都与更有力的工具和更简单的方法的发现密切联系着”。

和谐性也是数学美的特征之一。和谐即雅致,严谨或形式结构的无矛盾性。所谓“数学的和谐”不仅是宇宙的特点,原子的特点,也是生命的特点,人的特点(高尔泰语)。数学的严谨自然流露出它的和谐,为了追求严谨,追求和谐,数学家们一直在努力。

一切空间图形都可以简化抽象为点、线、面、体,这充分显示出数学和谐的美的规范。这种美感既是精细的,又是深遮的。

和谐的实例中最负盛名的是被开普勒称为欧氏几何学两颗明珠之一的黄金分割。它成为人们普遍喜爱的美的比例,并为广泛应用。艺术家利用它塑造了令人赞叹的艺术珍品,科学家利用它创造了丰硕的科技成果。象征黄金分割的五角星在欧洲也成为一种巫术的标志。这神圣的比例值也被抬高了身价,而被称为黄金数,成了宇宙的美神。人体最优美的身段遵循着这个黄金分割比;令人心旷神怡的花朵凭借的也是这个美的密码,就连芭蕾舞艺术的的魅力也离不开它。真是:哪里有黄金数,哪里就有美的闪光。

数学美的奇异性很容易激发学生的创造欲望,数学奇异美是学生创新的内驱力。数值计算中的反常设想,奇异的分法,美妙的结果都是数学存在奇异美,这种奇异美可以揭发学生的创新欲望,培养创新精神,同时在主动探索的过程中能体验到数学奇异美;应用题教学中,学生表现出新奇独特的、不拘一格的方法,正是学习高明的创新思维能力的体现,在此过程中,学生体验了数学美,从而激发了创新欲望:在几何形体知识的教学时,学生所采用的巧妙方法和产生奇异结果,能使学生在惊异中受到美的熏陶,同时使学生产生追求、向往使用巧妙方法和产生奇异结果,培养了学生的创新精神。例如:数值计算经常会产生一些奇异而美妙的结果:

3×4=12

33×34=1122

333×334=111222

3333×3334=11112222……

这一系列美妙的结果显示了一种规律:m个3构成的数与其直接后继的积是一个2m位数,其前m位为1,后m位为2。数学美的奇异性是客观物质世界奇特性的反映。奇异的结果,很容易激发学生的学习热情,会使人感到兴奋,受到吸引,产生美感,精彩之处能使人心灵震撼、心荡神驰。这些都是激励学生克服疑难,不断创新的极好动力。再比如:

12×12=144,21×21=441:

13×13=169,31×31=961:

102×102=10404,201×201=40401:

103×103=10609,301×301=90601:

还有:9+5+4=8+7+3,92+52+42=82+72+32……

这些数学式子既有奇异、新颖的外表,又常常蕴含着独特而又有创新性的内容和思想,能给学习者以启迪,帮助其增强求异、创新的能力。因此,数学奇异美是学生创新的内驱力,而学生在创新过程中又能感受到数学的奇异美,两者之间是相互依存、相互促进的。

世界上一切事物都是相互联系的,作为反映客观事物的量的方面的属性和规律的数学概念、定理、公式及法则等也必然是相互联系的:在一定的条件下处于一个统一体系中。数学美的统一性正体现了数学知识的部分与部分、部分与整体之间的有机联系。如:正方形是特殊的长方形,长方形又是特殊的平行四边形,平行四边形又是特殊的四边形。

总之,数学并不像我们原先认为的那般枯燥乏味,它不是长篇的定理公式的累积,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。古代哲学家、数学家普洛克拉斯说得好:“哪里有数,哪里就有美。”数学的美,需要人们用心、用智慧深层次地去挖掘,更好地体会她的美学价值和她丰富、深隧的内涵和思想,及其对人类思维的深刻影响。如果在学习过程中,我们能与数学家们一起探索、发现,从中获得成功的喜悦和荑的享受,那么我们就会不断深入其中,欣赏美并且创造美。

推荐访问:数学